

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[2-(5-methylsulfanyl-1,3,4-oxadiazol-2-yl- κN^3)phenolato- κO^1]copper(II)

Souheila Ouilia,^a Chahrazed Beghidja,^a Adel Beghidja^a* and François Michaud^b

^aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Faculté des Sciences Exactes, Département de Chimie, Université Mentouri, 25000 Constantine, Algeria, and ^bCentre de Diffractométrie X, Université de Bretagne Occidentale, BP 809, 29285 Brest Cedex, France Correspondence e-mail: a_beghidja@yahoo.fr

Received 10 May 2012; accepted 13 June 2012

Key indicators: single-crystal X-ray study; T = 170 K; mean σ (C–C) = 0.004 Å; R factor = 0.033; wR factor = 0.066; data-to-parameter ratio = 14.3.

In the title complex, $[Cu(C_9H_7N_2O_2S)_2]$, the Cu^{II} ion, located on an inversion center, adopts an N₂O₂ square-planar coordination. The 2-(5-methylsulfanyl-1,3,4-oxadiazol-2-yl)phenolate ligand is chelated to the central Cu^{II} ion in an *N*,*O*bidentate manner.

Related literature

For general background to derivatives of dithiocarbazate ligands and their metal complexes, see: Beghidja *et al.* (2005; 2006); Bouchameni *et al.* (2011); Beghidja, Bouslimani & Welter (2007); Beghidja, Rogez & Welter (2007). For similar structures, see: Kala *et al.* (2007); Liu *et al.* (2008); Zhang *et al.* (2001). For the preparation of the ligand, see: Dolman *et al.* (2006); Young & Wood (1955).

Experimental

Crystal data $[Cu(C_9H_7N_2O_2S)_2]$ $M_r = 478.02$ Monoclinic, $P2_1/n$

a = 12.5695 (7) Åb = 4.4216 (3) Åc = 17.3861 (9) Å $\beta = 106.005 \ (6)^{\circ}$ $V = 928.81 \ (9) \ Å^{3}$ Z = 2Mo $K\alpha$ radiation

Data collection

Oxford Diffraction Xcalibur CCD	6693 measured reflections
diffractometer	1906 independent reflections
Absorption correction: multi-scan	1250 reflections with $I > 2\sigma(I)$
(CrysAlis RED; Oxford	$R_{\rm int} = 0.037$
Diffraction, 2007)	
$T_{\min} = 0.926, T_{\max} = 1.000$	
Refinement	

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.033 \\ wR(F^2) &= 0.066 \\ S &= 0.99 \\ 1906 \text{ reflections} \end{split} \qquad \begin{array}{l} 133 \text{ parameters} \\ H\text{-atom parameters constrained} \\ \Delta \rho_{\text{max}} &= 0.31 \text{ e } \text{ Å}^{-3} \\ \Delta \rho_{\text{min}} &= -0.18 \text{ e } \text{ Å}^{-3} \\ \end{array}$$

metal-organic compounds

 $\mu = 1.44 \text{ mm}^{-1}$

 $0.18 \times 0.12 \times 0.09 \text{ mm}$

T = 170 K

Table 1 Selected bond lengths (Å).

Cu1-O2	1.896 (2)	Cu1-N1	1.9746 (19)

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2007); cell refinement: *CrysAlis CCD*; data reduction: *CrysAlis RED* (Oxford Diffraction, 2007); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ATOMS* (Dowty, 1995); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON* (Spek, 2009).

The authors thank the Algerian MESRS for financial support (PNR project).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HP2039).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Beghidja, C., Bouslimani, N. & Welter, R. (2007). C. R. Acad. Sci. II C, 10, 590–597.
- Beghidja, C., Rogez, G., Kurtus, J., Wesolek, M. & Welter, R. (2006). J. Am. Chem. Soc. 128, 3140–3141.
- Beghidja, C., Rogez, G. & Welter, R. (2007). New J. Chem. 31, 1403-1406.
- Beghidja, C., Wesolek, M. & Welter, R. (2005). Inorg. Chim. Acta, 358, 3881– 3888.
- Bouchameni, C., Beghidja, C., Beghidja, A., Rabu, P. & Welter, R. (2011). Polyhedron, 30, 1774–1778.
- Dolman, S., Gosselin, F., O'Shea, P. & Davies, I. (2006). J. Org. Chem. 71, 9548–9551.
- Dowty, E. (1995). ATOMS. Shape Software, Kingsport, Tennessee, USA.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Kala, U.-L., Suma, S., Prathapachandra Kurup, M.-R., Krishnan, S. & John, R.-P. (2007). Polyhedron, 26, 1427–1435.
- Liu, H., Lu, Z. & Niu, D. (2008). J. Coord. Chem. 61, 4040-4046.
- Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Young, R. & Wood, K. (1955). J. Am. Chem. Soc. 77, 400-403.
- Zhang, L. Z., Bu, P.-Y., Wang, L.-J. & Cheng, P. (2001). Acta Cryst. C57, 1166–1167.

supplementary materials

Acta Cryst. (2012). E68, m943 [doi:10.1107/S1600536812026815]

Bis[2-(5-methylsulfanyl-1,3,4-oxadiazol-2-yl- κN^3)phenolato- κO^1]copper(II)

Souheila Ouilia, Chahrazed Beghidja, Adel Beghidja and François Michaud

Comment

The molecular structure of the complex (1) shows that the Cu^{II} ion is located on an inversion center and chelated by two bidentate anions HL⁻ (Fig. 1). This ligand has been obtained from the *in situ* cyclization of 2-hydroxy [bis(methyl-sulfanyl)methylene]hydrazide HL⁽¹⁾ described previously by (Young *et al.*,1955; Dolman *et al.*, 2006). The title mononuclear complex, [Cu (C₉H₇O₂N₂S)₂] (1) has a square-plane geometry formed by the N₂O₂ donor atoms (N1, O2). Several mononuclear compounds with similar structures have been reported previously (Kala *et al.*, 2007; Liu *et al.*, 2008). The whole molecule is planar with a small deviation at C8 from the mean plane. The distances in the coordination planes around the Cu^{II} ion [Cu₁—N₁= 1.975 (19) Å and Cu₁—O₂= 1.896 (2) Å] are in agreement with other square-planar complexes, such as [Cu(C₁₅H₂₂O)2] [Cu—O = 1.88 (3) Å and Cu—N = 2.00 (3) Å; (Zhang *et al.*, 2001)]. From a supramolecular point of view, this structure can be described as a zigzag chain within which the molecular complexes are connected to each other *via* the weak hydrogen bonding C—H···O. In the crystal the layers are held together by normal van der Waals interactions (Fig. 2).

Experimental

The ligand $HL^{(1)}$ (0.128 g, 0.05 mmol) was dissolved in minimum of DMF. The solution of CuCl₂.2H₂O (0.0085 g, 0.05 mmol) in DMF was added to the first when the ligand was dissolved completely. Green crystals of the complex 1 were isolated from the solution after two weeks.

Refinement

All H atoms were placed at calculated positions and treated as riding on their parent atoms with C—H = 0.93-0.96 Å, and U_{iso} (H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.

Computing details

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2007); cell refinement: *CrysAlis CCD* (Oxford Diffraction, 2007); data reduction: *CrysAlis RED* (Oxford Diffraction, 2007); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ATOMS* (Dowty, 1995); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON* (Spek, 2009).

Figure 1

The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Figure 2

Linking of the layers in the structure via van der Waals interactions.

Bis[2-(5-methylsulfanyl-1,3,4-oxadiazol-2-yl- κN^3)phenolato- κO^1]copper(II)

Crystal data

[Cu(C₉H₇N₂O₂S)₂] $M_r = 478.02$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 12.5695 (7) Å b = 4.4216 (3) Å c = 17.3861 (9) Å $\beta = 106.005$ (6)° V = 928.81 (9) Å³ Z = 2F(000) = 486

Data collection

Oxford Diffraction Xcalibur CCD	6693 mea
diffractometer	1906 inde
Radiation source: Enhance (Mo) X-ray Source	1250 refle
Graphite monochromator	$R_{\rm int} = 0.03$
Detector resolution: 18.4 pixels mm ⁻¹	$\theta_{\rm max} = 26.$
ω and φ scans	h = -15 - 15
Absorption correction: multi-scan	$k = -5 \rightarrow 5$
(CrysAlis RED; Oxford Diffraction, 2007)	$l = -21 \rightarrow$
$T_{\rm min} = 0.926, T_{\rm max} = 1.000$	

Least Squares Treatment of 25 SET4 setting angles. $D_x = 1.709 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2354 reflections $\theta = 3.3-31.6^{\circ}$ $\mu = 1.44 \text{ mm}^{-1}$ T = 170 KPlates, green $0.18 \times 0.12 \times 0.09 \text{ mm}$

6693 measured reflections 1906 independent reflections 1250 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 26.4^\circ, \ \theta_{min} = 3.4^\circ$ $h = -15 \rightarrow 15$ $k = -5 \rightarrow 5$ $I = -21 \rightarrow 14$ Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.033$ $wP(F^2) = 0.066$	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from
$WR(F^2) = 0.066$ S = 0.99 1906 reflections 133 parameters	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0283P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
0 restraints Primary atom site location: structure-invariant direct methods	$(\Delta/\sigma)_{max} = 0.004$ $\Delta\rho_{max} = 0.31 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.18 \text{ e } \text{Å}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cu1	0.50000	0.00000	1.00000	0.0381 (1)
S1	0.45296 (6)	0.47186 (17)	0.68566 (4)	0.0455 (3)
01	0.58495 (13)	0.1114 (4)	0.79047 (9)	0.0362 (6)
O2	0.62190 (14)	-0.2686 (5)	1.01766 (9)	0.0506 (7)
N1	0.51554 (16)	0.0936 (5)	0.89257 (11)	0.0347 (7)
N2	0.44837 (16)	0.2890 (5)	0.83525 (11)	0.0387 (8)
C1	0.59434 (18)	-0.0065 (6)	0.86434 (13)	0.0315 (7)
C2	0.68113 (19)	-0.2153 (6)	0.89831 (14)	0.0326 (8)
C3	0.68883 (19)	-0.3359 (6)	0.97479 (15)	0.0356 (8)
C4	0.7755 (2)	-0.5413 (6)	1.00571 (15)	0.0424 (9)
C5	0.8503 (2)	-0.6167 (6)	0.96422 (17)	0.0474 (10)
C6	0.8424 (2)	-0.4940 (7)	0.88955 (16)	0.0455 (9)
C7	0.7584 (2)	-0.2969 (6)	0.85724 (16)	0.0429 (10)
C8	0.4933 (2)	0.2903 (6)	0.77720 (14)	0.0346 (8)
C9	0.3251 (2)	0.6276 (7)	0.69352 (17)	0.0602 (11)
H4	0.78230	-0.62840	1.05550	0.0510*
Н5	0.90710	-0.75200	0.98660	0.0570*
H6	0.89350	-0.54500	0.86190	0.0550*
H7	0.75220	-0.21510	0.80690	0.0510*
H9A	0.29080	0.74020	0.64590	0.0900*
H9B	0.33910	0.75940	0.73910	0.0900*
H9C	0.27680	0.46690	0.69980	0.0900*

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cul	0.0309 (2)	0.0596 (3)	0.0265 (2)	0.0096 (2)	0.0123 (2)	0.0020 (3)
S 1	0.0469 (4)	0.0576 (5)	0.0340 (4)	-0.0015 (4)	0.0146 (3)	0.0092 (4)
O1	0.0361 (10)	0.0457 (11)	0.0307 (9)	-0.0003 (8)	0.0158 (8)	0.0006 (8)
O2	0.0442 (11)	0.0785 (14)	0.0346 (10)	0.0221 (10)	0.0200 (9)	0.0092 (11)
N1	0.0300 (11)	0.0482 (14)	0.0274 (11)	0.0054 (10)	0.0104 (9)	0.0020 (10)
N2	0.0340 (12)	0.0521 (15)	0.0303 (12)	0.0051 (11)	0.0093 (10)	0.0039 (11)
C1	0.0301 (12)	0.0398 (14)	0.0261 (12)	-0.0068 (14)	0.0102 (10)	-0.0058 (14)
C2	0.0285 (13)	0.0385 (15)	0.0316 (13)	-0.0021 (11)	0.0098 (11)	-0.0059 (12)
C3	0.0289 (13)	0.0443 (16)	0.0341 (14)	-0.0017 (12)	0.0095 (11)	-0.0084 (13)
C4	0.0397 (15)	0.0520 (19)	0.0342 (13)	0.0079 (13)	0.0078 (12)	0.0011 (14)
C5	0.0398 (16)	0.0462 (17)	0.0562 (19)	0.0112 (13)	0.0135 (14)	-0.0070 (15)
C6	0.0398 (14)	0.0508 (17)	0.0535 (16)	0.0065 (15)	0.0256 (13)	-0.0016 (17)
C7	0.0426 (16)	0.0489 (18)	0.0438 (16)	0.0004 (14)	0.0230 (13)	-0.0031 (14)
C8	0.0320 (14)	0.0401 (16)	0.0315 (14)	-0.0036 (12)	0.0086 (12)	-0.0033 (12)
C9	0.060 (2)	0.069 (2)	0.0527 (19)	0.0110 (16)	0.0175 (16)	0.0157 (16)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Cu1—O2	1.896 (2)	C2—C3	1.411 (3)
Cu1—N1	1.9746 (19)	C2—C7	1.402 (4)
Cu1—O2 ⁱ	1.896 (2)	C3—C4	1.406 (4)
Cu1—N1 ⁱ	1.9746 (19)	C4—C5	1.375 (4)
S1—C8	1.729 (3)	C5—C6	1.385 (4)
S1—C9	1.788 (3)	C6—C7	1.365 (4)
01—C1	1.361 (3)	C4—H4	0.9300
O1—C8	1.364 (3)	C5—H5	0.9300
O2—C3	1.303 (3)	С6—Н6	0.9300
N1—N2	1.410 (3)	С7—Н7	0.9300
N1—C1	1.298 (3)	С9—Н9А	0.9600
N2—C8	1.285 (3)	C9—H9B	0.9600
C1—C2	1.427 (4)	С9—Н9С	0.9600
Cu1…O2 ⁱⁱ	3.555 (2)	C3…Cu1 ^{vi}	3.876 (3)
Cu1···C3 ⁱⁱ	3.876 (3)	C3…N1 ^{vi}	3.381 (3)
Cu1…C4 ⁱⁱ	3.991 (3)	C3····C1 ^{vi}	3.554 (4)
Cu1…O2 ⁱⁱⁱ	3.555 (2)	C3…Cu1 ⁱⁱⁱ	3.876 (3)
Cu1···C3 ⁱⁱⁱ	3.876 (3)	C4····C2 ^{vi}	3.543 (4)
Cu1…C4 ⁱⁱⁱ	3.991 (3)	C4…Cu1 ^{vi}	3.991 (3)
S1…H6 ^{iv}	3.1400	C4…C1 ^{vi}	3.517 (4)
S1…H4 ^v	3.0600	C4…Cu1 ⁱⁱⁱ	3.991 (3)
O1…N2	2.215 (3)	C5····C7 ^{vi}	3.557 (4)
O1····C7 ⁱⁱ	3.399 (3)	C5····C2 ^{vi}	3.391 (4)
$O2 \cdots N2^i$	2.928 (3)	C7…O1 ^{vi}	3.399 (3)
O2…C1	2.839 (3)	C7····C5 ⁱⁱ	3.557 (4)
O2…Cu1 ^{vi}	3.555 (2)	C8····C1 ⁱⁱ	3.538 (4)
02…N1	2.735 (3)	C8…C2 ⁱⁱ	3.471 (4)
O2…Cu1 ⁱⁱⁱ	3.555 (2)	C9…N2 ^x	3.410 (3)

O2…N1 ⁱ	2.740 (3)	C3····H9A ^{viii}	2.9300
O1…H6 ^{vii}	2.8200	C4···H9A ^{viii}	2.7400
O1…H7	2.5000	C8····H9B ^{vi}	3.0000
O2…H9A ^{viii}	2.6200	C9····H9C ^x	2.9400
N1…O1	2.185 (3)	H4…S1 ^{xi}	3.0600
N1…O2	2.735 (3)	H4…H9A ^{viii}	2.3100
N1…C3	2.946 (3)	H6…S1 ^{xii}	3.1400
N1····C3 ⁱⁱ	3.381 (3)	H6…O1 ^{xiii}	2.8200
N1…O2 ⁱ	2.740 (3)	H7…O1	2.5000
N2…O1	2.215 (3)	H9A…O2 ^{xiv}	2.6200
N2…O2 ⁱ	2.928 (3)	H9A…C3 ^{xiv}	2.9300
N2····C9 ^{ix}	3.410 (3)	H9A…C4 ^{xiv}	2.7400
N2…H9C	2.8300	H9A…H4 ^{xiv}	2.3100
N2…H9B	2.7800	H9B…N2	2.7800
C1···C3 ⁱⁱ	3.554 (4)	H9B···C8 ⁱⁱ	3.0000
C1···C4 ⁱⁱ	3.517 (4)	H9B···H9C ^x	2.2200
C1···C8 ^{vi}	3.538 (4)	H9C…N2	2.8300
C2···C4 ⁱⁱ	3.543 (4)	H9C···C9 ^{ix}	2.9400
C2···C5 ⁱⁱ	3.391 (4)	H9C···H9B ^{ix}	2.2200
C2···C8 ^{vi}	3.471 (4)		
O2—Cu1—N1	89.90 (8)	C3—C4—C5	121.7 (2)
O2—Cu1—O2 ⁱ	180.00	C4—C5—C6	121.0 (2)
O2—Cu1—N1 ⁱ	90.11 (8)	C5—C6—C7	118.9 (2)
O2 ⁱ —Cu1—N1	90.11 (8)	C2—C7—C6	121.4 (2)
N1—Cu1—N1 ⁱ	180.00	S1—C8—O1	116.41 (17)
O2 ⁱ —Cu1—N1 ⁱ	89.90 (8)	S1—C8—N2	130.1 (2)
C8—S1—C9	98.63 (13)	O1—C8—N2	113.5 (2)
C1—O1—C8	103.37 (18)	C3—C4—H4	119.00
Cu1—O2—C3	132.15 (16)	C5—C4—H4	119.00
Cu1—N1—N2	126.93 (15)	C4—C5—H5	120.00
Cu1—N1—C1	124.81 (17)	С6—С5—Н5	119.00
N2—N1—C1	108.19 (19)	С5—С6—Н6	121.00
N1—N2—C8	104.5 (2)	С7—С6—Н6	121.00
01—C1—N1	110.5 (2)	С2—С7—Н7	119.00
O1—C1—C2	119.7 (2)	С6—С7—Н7	119.00
N1—C1—C2	129.8 (2)	S1—C9—H9A	109.00
C1—C2—C3	118.7 (2)	S1—C9—H9B	109.00
C1—C2—C7	120.9 (2)	S1—C9—H9C	109.00
C3—C2—C7	120.4 (2)	Н9А—С9—Н9В	109.00
O2—C3—C2	124.4 (2)	Н9А—С9—Н9С	110.00
O2—C3—C4	118.9 (2)	H9B—C9—H9C	109.00
C2—C3—C4	116.7 (2)		
	2.7 (0)		176.01 (15)
N1 - Cu1 - O2 - C3	3.7(2)	UI - INI - UI - UI	-1/0.81(15)
$\frac{1}{2} - \frac{1}{2} - \frac{1}$	-1/0.5(2)	N1 N2 C9 S1	0.2(3)
$O_2 = O_1 = O_1 = O_2$	1/0.0(2)	$N1 - N2 - C\delta - \delta I$	1/1.9(2) 1.2(4)
$O_2 = Cu_1 = N_1 = N_2$	-1.4(2)	$U_1 - U_1 - U_2 - U_1$	1.2 (4)
02—Cu1—N1—Cl	-4.9 (2)	NI - CI - C2 - C/	1/9.4 (3)

O2 ⁱ —Cu1—N1—C1	175.1 (2)	O1—C1—C2—C3	-179.6 (2)
C9—S1—C8—O1	173.0 (2)	N1—C1—C2—C3	-1.4 (4)
C9—S1—C8—N2	-4.7 (3)	C3—C2—C7—C6	0.2 (4)
C8—O1—C1—N1	-0.1 (3)	C1—C2—C3—C4	179.8 (2)
C1—O1—C8—N2	-0.1 (3)	C1—C2—C7—C6	179.3 (3)
C8—O1—C1—C2	178.4 (2)	C1—C2—C3—O2	-0.4 (4)
C1—O1—C8—S1	-178.12 (18)	C7—C2—C3—O2	178.8 (2)
Cu1—O2—C3—C2	-1.8 (4)	C7—C2—C3—C4	-1.0 (4)
Cu1—O2—C3—C4	177.95 (18)	O2—C3—C4—C5	-178.6 (2)
C1—N1—N2—C8	-0.3 (3)	C2—C3—C4—C5	1.2 (4)
Cu1—N1—N2—C8	176.71 (18)	C3—C4—C5—C6	-0.5 (4)
N2—N1—C1—C2	-178.1 (3)	C4—C5—C6—C7	-0.3 (4)
N2—N1—C1—O1	0.2 (3)	C5—C6—C7—C2	0.5 (4)
Cu1—N1—C1—C2	4.9 (4)		

Symmetry codes: (i) -x+1, -y, -z+2; (ii) x, y+1, z; (iii) -x+1, -y-1, -z+2; (iv) -x+3/2, y+3/2, -z+3/2; (v) x-1/2, -y-1/2, z-1/2; (vi) x, y-1, z; (vii) -x+3/2, y+1/2, -z+3/2; (viii) x+1/2, -y+1/2, z+1/2; (ix) -x+1/2, y-1/2, -z+3/2; (x) x+1/2, -y-1/2, z+1/2; (xii) -x+3/2, y-3/2, -z+3/2; (xiii) -x+3/2, y-1/2, -z+3/2; (xiii) -x+3/2, y-3/2, -z+3/2; (xiii) -x+3/2, y-1/2, -z+3/2; (xii) x+1/2, -y-1/2, z+1/2; (xii) -x+3/2, y-3/2, -z+3/2; (xiii) -x+3/2, y-1/2, -z+3/2; (xiii) -x+3/2, y-1/2, -z+3/2; (xiv) x-1/2, -y+1/2, -z+3/2; (xiv) x-1/2, -y+1/2, -z+3/2; (xiv) -x+3/2, y-3/2, -z+3/2; (xiv) -x+3/2, y-1/2, -z+3/2; (xiv) x-1/2, -y+1/2, -z+3/2; (xiv) -x+3/2, y-3/2, -z+3/2; (xiv) -x+3/2, y-1/2, -z+3/2; (xiv) x-1/2, -y+1/2, -z+3/2; (xiv) -x+3/2, y-3/2, -z+3/2; (xiv) -x+3/2, y-3/2, -z+3/2; (xiv) -x+3/2, y-1/2, -z+3/2; (xiv) -x+3/2, y-3/2, -z+3/2; (xiv) -x+3/2, y-3/2, -z+3/2; (xiv) -x+3/2, y-3/2, -z+3/2; (xiv) -x+3/2, -y-1/2, -z+3/2; (xiv) -x+3/2, y-3/2, -z+3/2; (xiv) -x+3/2, -y-1/2, -z+3/2; (xiv) -x+3/2, -y-1/2, -z+3/2; (xiv) -x+3/2, -y-1/2, -z+3/2; (xiv) -x+3/2, -z+3/2; (xiv) -x+3/2; (xiv) -x+3/2, -z+3/2; (xiv) -x+3/2, -z+3/2; (xiv) -x+3/2; (xiv) -x+3/2, -z+3/2; (xiv) -x+3/2; (xiv)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
С7—Н7…О1	0.93	2.50	2.822 (3)	100